Wound induced changes in phenolic metabolism and tissue browning are altered by heat shock
نویسنده
چکیده
Wounding is one of many abiotic stresses that produce signals that propagate from injured into adjacent non-injured tissues and induce the de novo synthesis of specific wound-induced proteins. Some of these induced proteins are enzymes of phenolic metabolism, such as phenylalanine ammonia-lyase (PAL), whose increased activity leads to the accumulation of phenolic compounds (e.g., chlorogenic acid, dicaffeoyl tartaric acid and isochlorogenic acid) and tissue browning. Wounding of iceberg lettuce leaves increases PAL activity sixto 12-fold over 24 h at 10°C and leads to a three-fold increase in the total phenolic content within 3 days. There may be a hierarchical order to the plant’s response to different abiotic stresses. Plant tissue simultaneously exposed to a heat shock and wounding responds to the heat shock in preference to wounding by producing heat shock proteins instead of PAL. A 90 s, 45°C heat shock prevents an increase in PAL activity if administered either 4 h before or 2 h after wounding. This diversion of wound-induced protein synthesis by heat shock might be used to prevent browning in other crops that normally have low phenolic content; e.g., celery and lettuce. The persistence of the ability of a heat shock to preferentially induce the synthesis of heat shock proteins (hsps) in place of wound-induced enzymes of phenylpropanoid metabolism offers a new way to control browning in lightly processed fruits and vegetables. The design of processing lines using a heat shock to extend the shelf-life of fresh-cut lettuce will need to be modified from existing designs to take full advantage of the effect of the heat treatment. © 2000 Elsevier Science B.V. All rights reserved.
منابع مشابه
Wound-induced PAL activity is suppressed by heat-shock treatments that induce the synthesis of heat-shock proteins
Wounding lettuce leaves induces the de novo synthesis of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), the accumulation of phenolic compounds, and subsequent tissue browning. A brief heat-shock at 45 C reduces the rise in wound-induced PAL, the accumulation of phenolic compounds, and tissue browning. The activity of PAL measured 24 h after wounding and the content of phenolic compounds (absorb...
متن کاملHeat shock treatments delay the increase in wound-induced phenylalanine ammonia-lyase activity by altering its expression, not its induction in Romaine lettuce (Lactuca sativa) tissue
Wounding lettuce (Lactuca sativa L., var. Longifolia) leaves induced an eight-fold increase in the activity of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), and the subsequent accumulation of phenolic compounds and tissue browning at 10 C. PAL is a key enzyme in the synthesis of phenolic compounds. A PAL cDNA was previously isolated by reverse-transcription PCR using total RNA from wounded let...
متن کاملWound-induced phenolic accumulation and browning in lettuce (Lactuca sativa L.) leaf tissue is reduced by exposure to n-alcohols
A wound signal originates at the site of injury in lettuce (Lactuca sativa L.) leaf tissue and propagates into adjacent tissue where it induces a number of physiological responses which include increased phenolic metabolism with the de novo synthesis of phenylalanine ammonia lyase (PAL, EC 4.3.1.5), the synthesis and accumulation of soluble phenolic compounds (e.g., chlorogenic acid), and subse...
متن کاملمقایسه سطح پروتئین شوک حرارتی- 70 در مایع سینویال بیماران مبتلا به آرتریت روماتوئید و اوستئوآرتریت
Background: Heat-shock proteins are part of a strictly controlled biological system that allows organisms to respond to environmental stresses. Different proinflammatory cytokines are present in the synovial tissue of rheumatoid arthritis patients. Such tissues respond to stress and induce heat-shock proteins. In addition, synovial cells are exposed to mechanical stress caused by joint motion. ...
متن کاملDown-Regulation of T Cell Function by Heat Shock-Induced Excretory Factor of Leishmania Major
Background: Despite demonstration of molecular and biochemical changes induced by heat shock on Leishmania, the immunological importance of such changes has not been elucidated. Objective: Studying the effect of two excretory factors prepared under heat shock and ambient temperature from Leishmania major on Balb/c splenocytes function. Methods: The parasites were cultured at 25°C and then sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000